Classic Cat


Interval class

Buy sheetmusic at SheetMusicPlus

In musical set theory, an interval class (often abbreviated: ic), also known as unordered pitch-class interval, interval distance, undirected interval, or (completely incorrectly, since this would mean, e.g., that a perfect fourth and a minor second are inversionally equivalent and belong to the same interval class, as would a unison and a tritone) interval mod 6 (Rahn 1980, 29; Whittall 2008, 273–74), is the shortest distance in pitch class space between two unordered pitch classes. For example, the interval class between pitch classes 4 and 9 is 5 because 9 − 4 = 5 is less than 4 − 9 = −5 ≡ 7 (mod 12). See modular arithmetic for more on modulo 12. The largest interval class is 6 since any greater interval n may be reduced to 12 − n.


Use of interval classes

The concept of interval class was created to account for octave, enharmonic, and inversional equivalency.[original research?] Consider, for instance, the following passage:

Octatonic motif

(To hear a MIDI realization, click the following: About this sound 106 KB

In the example above, all four labeled pitch-pairs, or dyads, share a common "intervallic color." In atonal theory, this similarity is denoted by interval class—ic 5, in this case. Tonal theory, however, classifies the four intervals differently: interval 1 as perfect fifth; 2, perfect twelfth; 3, diminished sixth; and 4, perfect fourth. Thus we see that in a dodecaphonic (i.e., chromatic) context, terminology tailored for the analysis of heptatonic (i.e., diatonic) music is often no longer suitable.[original research?]

Incidentally, the example's pitch collection forms an octatonic set.[original research?]

Notation of interval classes

The unordered pitch class interval i (ab) may be defined as

i (a,b) =\text{ the smaller of }i \langle a,b\rangle\text{ and }i \langle b,a\rangle,

where i <ab> is an ordered pitch class interval (Rahn 1980, 28).

While notating unordered intervals with parentheses, as in the example directly above, is perhaps the standard, some theorists, including Robert Morris (1991), prefer to use braces, as in i {a,b}. Both notations are considered acceptable.

Table of interval class equivalencies

Interval Class Table
ic included intervals tonal counterparts
0 0 unison and octave
1 1 and 11 minor 2nd and major 7th
2 2 and 10 major 2nd and minor 7th
3 3 and 9 minor 3rd and major 6th
4 4 and 8 major 3rd and minor 6th
5 5 and 7 perfect 4th and perfect 5th
6 6 augmented 4th and diminished 5th


  • Morris, Robert (1991). Class Notes for Atonal Music Theory. Hanover, NH: Frog Peak Music.
  • Rahn, John (1980). Basic Atonal Theory. ISBN 0-02-873160-3. For forumala definitions only.
  • Whittall, Arnold (2008). The Cambridge Introduction to Serialism. New York: Cambridge University Press. ISBN 978-0-521-68200-8 (pbk).

Further reading

External links

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Interval class". Allthough most Wikipedia articles provide accurate information accuracy can not be guaranteed.

Our dream: to make the world's treasury of classical music accessible for everyone. See the about page on how we see the future.
Help us with donations or by making music available!

Contact     Privacy policy    Looking for classical mp3 downloads? We index the free-to-download classical mp3s on the internet.
©2023 Classic Cat - the classical music directory
Sheet Music Plus Featured Sale